
Journal of Finance and Accountancy 

Black swans and VAR, page 1 
 

Black swans and VaR 
 

Michael Adams 

Jacksonville University 

 

Barry Thornton 

Jacksonville University 

 

ABSTRACT    

 

There are two general classes of probability domains; each is very distinct, both 

qualitatively and quantitatively.  The first distribution is referred to as a "Gaussian-Poisson 

distribution" – thin tail, the second, a “fractal” or Mandelbrotian distribution - fat tail. In thin-tail 

distributions, statistical exceptions occur but they don't carry unusually large consequences. In 

fat-tail distributions, when significant deviations (black swans) occur, the consequences are 

usually catastrophic in nature. Standard deviation is a useful statistical measurement of risk, if 

the underlying asset returns are distributed in a normal fashion about the mean. However, if the 

asset returns deviate significantly from what would be expected in a Gaussian distribution, 

standard deviation is often an inadequate and poor measurement of total risk and can often result 

in the serious underestimation of potential losses. Albeit, VaR is fairly accurate in predicting 

small daily losses with high probability, it breaks down completely in forecasting large 

catastrophic losses that exist in the tail of the distribution – black swan events.  A glance at the 

Dow Jones Industrial Average's biggest one-day gains and losses confirms the existence of black 

swan events: On each of two different days in October 2008, the Dow surged more than 10%. On 

each of eight different days in late 2008, the Dow gave back more than 5%. 2008 was a 

particularly volatile year, but big moves can happen any time.  In this article, the theoretical 

normality assumption is empirically tested (and clearly rejected) using time series of stock 

returns for the U.S. stock market for the last 30 years.  The purpose of this study is to illustrate 

the existence of black swan events and their historical frequency, paying particular attention to 

the time period 1980-2010.   
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BACKGROUND 

The term “Black Swan” comes from the common misconception that 'All swans are 

white' and has found general application in the financial markets, especially in light of the 1987 

stock market crash , the 2008/09 credit market meltdown and the 2010 flash crash.  The 

prevalent belief held among 17
th

 century Northern Europeans that there was no such thing as a 

black swan, since no one had ever actually seen one. However, the discovery of the existence of 

black swans (Cygnus atratus) in Australia transformed the term to connote that a perceived 

impossibility had actually occurred. A Black Swan is a metaphor coined by Nasim Taleb to 

describe events that are apparently possible, but could not have been predicted based on past 

evidence. Taleb notes people’s heuristic to disbelieve that which one cannot predict.   Taleb 

(2007), states “although these unpredictable deviations are fairly rare, they cannot be dismissed 

as outliers because cumulatively, their impact is so dramatic." (p. 27).   

Before Taleb, David Hume (1748), John Mill (1843) and Karl Popper (1968) all 

described the problem of drawing general conclusions from limited observations. In general, 

financial decision models are generally based on a model predicting possible financial outcomes 

not only often ignores, but always limits the impact of events which are considered outliers to the 

model. The point is, a single such sighting of a black swan can invalidate a general statement 

(i.e., “all swans are white”).  Taleb however was not the first to discover “fat tails” in stock 

returns. For example, Benoît Mandelbrot (1963) posited in a seminal article that changes in 

cotton prices could generally “be modeled by a stable Paretian distribution with a characteristic 

exponent less than 2.” (p. 25).  Mandelbrot tested the infinite-variance hypothesis (fat tails) by 

calculating the standard deviation of changes in the prices on the cotton exchange and  concluded 

that the return variances appeared to be much more erratic than what would be normally 

expected under an infinite-variance hypothesis.  

 

INTRODUCTION  

 

Modern financial theory has advanced our understanding of financial markets immensely; 

albeit, some of financial theory’s foundational assumptions do not appear to be borne out by 

market realities.   Many financial models in neo-classical finance theory are predicated on the 

premise that changes in stock returns are normally distributed around the mean in the well-

known bell curve.  A normal distribution is a powerful analytical tool, because one can specify 

the distribution with only two variables, the mean and the square root of the variance. However, 

these models are remiss in capturing ‘fat tails’: infrequent but very large price changes.  Fat tails 

are closely related to power laws, a mathematical link between two variables that are 

characterized by frequent small events and infrequent large events. (Mauboussin, 2002).   This is 

the result of the combination of kurtosis risk and the risk associated with skewness.  The overall 

returns can be dominated by extreme events (kurtosis), which are skewed to the downside.   

These fat-tail distributions pose several fundamental risk management problems.   These 

problems include: (1) the presence of extreme adverse events, (2) some random unobserved 

events, and (3) hard-to-compute expectations.  

Assumptions of normal distributions of stock returns are the pillars of finance models, 

including modern portfolio theory (mean-variance criterion), the capital asset pricing, Value-at-

Risk (VaR), and the Black-Scholes models. The 1987 stock market crash was so improbable 

(black Monday was a black swan - 18 sigma event) given the standard statistical models used in 

finance, that it has called the entire basis of neo-classical finance models into question. This has 
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led many to conclude that there are some recurring events, perhaps one or two per decade, that 

overwhelms the statistical assumptions embedded in the standard finance models employed for 

trading, investment management and derivative pricing (Estrada 2008). These statistical 

anomalies appeared to affect many financial markets at once, including ones that were normally 

not thought to be correlated.  Moreover, these severe market events seldom had a discernible 

economic cause or warning. These rare events were later named "Black Swans" by Taleb (2007) 

and the concept has extended far beyond finance.   By definition, black swan events lack the 

historical perspective needed to perform ex-ante mathematical risk analysis. 

 

REVIEW OF LITERATURE 

 

Bachelier (1900) was the one of the first mathematicians to discover that most asset 

returns tend to follow a random walk or Brownian motion.  Mandlebrot (1963) suggested that 

stock returns were in fact leptokurtic and thereby rejected the Gaussian distribution hypothesis.  

In 1964, Cootner also concluded that the random nature of stock returns makes the use of 

standard deviation a relatively poor proxy for risk assessment.  Starting with Engle (1982) and 

later with Bollerslev in 1986, it has been shown that “Generalized Autoregressive Conditional 

Heteroskedasticity models” also referred to as GARCH models more accurately describe the 

random nature of actual stock returns than the Gaussian distribution assumption.  Benoit 

Mandlebrot concluded that on the basis of his study of stock returns, that the over reliance on the 

assumption of normal distribution of return has resulted in serious flaws in most modern 

financial models including the Black Scholes option pricing model, and Benoît Mandelbrot, a 

French mathematician, extensively researched this issue. He concluded that the extensive 

reliance on the normal distribution for much of the body of modern finance and investment 

theory is a serious flaw of finance modeling (including the Black-Scholes option model, and the 

Capital Asset Pricing Model). He explained his views and alternative finance theory in a book: 

The Misbehavior of Markets. Mandelbrot (1997) proposed to replace the normality assumption 

with a “fractal view of risk, ruin, and reward.” (p. 67).  According to the fractal view, large stock 

return swings are far more clustered than what would be predicted if the market followed a 

random walk normal distribution; the prevailing paradigm in investments.   Later, Eugene Fama 

demonstrated that extreme returns occurred with much greater frequency than if returns were 

normally distributed by testing stock price changes.  According to Fama (1965):    

“Mandelbrot is right. The distribution is fat-tailed relative to the normal 

distribution.   In other words, extreme returns occur much more often than 

would be expected if returns were normal.   As the result, the normality of 

stock returns has been replaced by the assumption of fat-tailed distributions 

in a wide variety of markets, assets, and time periods.” (p. 78).  

  

Kon (1984), Berglund and Liljeblom (1990), Campbell and Hentschel (1992), Chan and 

Lakonishok (1992), and later, Frennberg (1993), after examining foreign markets covering 

different time periods, all concluded that stock returns tend to be leptokurtically distributed, not 

Gaussian in nature.  Roll (1988) posits that the very nature of stock market returns to quickly 
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reflect new information (EMH) tends to increase the degree of kurtosis of the returns and often 

results in increased outliers or fat tails when compared to the ubiquitous normal distribution. 

This does not address the question of why black swan events appear to cluster together. 

METHODOLOGY 

 

 A standard normal distribution is a normal bell shaped distribution with a unit variance (

) and a zero mean ( ).  A Mandelbrot distribution is a probability distribution in which 

there is a large probability of experiencing a small gain, coupled with a small probability of 

experiencing a very large loss; which more than outweighs the gains. The mean of this 

theoretical distribution is less than 0 and the variance is infinite. The empirical distribution has 

fat tails (leptokurtic) and a high degree of kurtosis as compared to the normal distribution. 

A return distribution that is very peaked or tightly distributed exhibits a high degree of kurtosis 

and usually will be characterized by fat tails in the distribution.  This is especially true when 

compared with the ubiquitous thin tailed normal distribution.  These fat tail mean that there 

exists a greater probability for extreme events occurring and are referred to in the literature as 

leptokurtosis.  To determine the frequency of black swan events occurring, a thirty year time 

period was selected utilizing daily, weekly and monthly returns.  The s&p500 serves as the proxy 

for the market. (Source: Yahoo). 

   To empirically identify the presence of extreme black swans in the U.S. stock markets, 

two different methodologies were used in this study in an attempt to empirically identify the 

presence of extreme black swan events on the NYSE.  The first method was to calculate the 

statistical properties of stock returns on a monthly, weekly and daily basis.  Secondly, the ranges 

of distribution frequencies were computed for daily, weekly and monthly returns over the time 

period of March 31, 1979 and March 31, 2009. 

VALUE AT RISK 

 

  Value at Risk (VaR) has been widely employed to ascertain the potential risk for losses 

on  a financial asset portfolio and is usually defined as the maximum value that the “mark-to-

market” loss probability on the portfolio will exceed this threshold value   This is often referred 

to as the potential loss to asset values measured in the firm’s daily accounts.  VaR assumes a log-

normal diffusion return process based upon an underlying normal distribution of returns.  A loss 

which exceeds the VaR threshold is generally termed a “VaR break,” with a probability level of 

one minus the statistical probability of a VaR break occurring.  VaR simply marks the statistical 

boundary between normal days and extreme event (black swan) days.   

 

NORMAL VS. FAT-TAIL VAR 

 

For a probability distribution to be considered stable, all the independent random 

variables must also have the same distribution as the constants alpha and beta.  Moreover, the 

normal distribution is the only stable distribution whose standard deviation is defined; all other 

distributions have standard deviations that are either infinite or undefined.  The general class of 

stable distributions was first identified by Levy in 1998 
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According to Wikipedia:  “Given some confidence level  t   the VaR of the 

portfolio at the confidence level α is given by the smallest number l such that the probability that 

the loss L exceeds l is not larger than (1 – α)” (source: Wikipedia (2009). A normal distribution 

is defined as a distribution whose expected value = 0 and whose sigma = 1.  Ergo, most 

theoretical research performed is usually presented in characteristic function instead of 

probability density functions as is usual with normal probability distributions.  More precisely, 

the distribution of any random variable (X) is said to contain a fat tails if the following condition 

is met: 

 

 
 

 By contrast to fat tail distributions, the normal distribution posits events that deviate from 

the mean by five or more standard deviations ("5-sigma event") are extremely rare, with 10- or 

more sigma being practically impossible. Fat tail distributions are examples of fat tail 

distributions that have "infinite sigma" (more technically: "the variance does not exist"). 

The rationale for adopting the normality distribution assumption was to not reduce the theoretical 

model to a mere empirical distribution fitting, Mandelbrot thought it was foolish to have to 

assume different distributions for daily, monthly and annual stock returns.  Instead, he sought a 

model that could be applied to all classes of asset returns, regardless of the time interval being 

measured.  He found that he could accomplish this by assuming a normal distribution of returns 

(Mandelbrot, 1999).  Thus when return data naturally arise from a fat tail distribution, if the 

normal distribution model of risk is assumed, then an estimate of the corresponding sigma based 

necessarily on a finite sample size, severely understates the actual risk. Many academicians have 

noted this shortcoming of the normal distribution model and have proposed that fat tail 

distributions such as the stable distribution govern asset returns to replace the normality 

assumption in financial models (Mandelbrot 2008; Taleb 2009).  

 Most distributions that are considered “stable” usually contain "fat tails".  The actual 

S&P500 return distribution demonstrated much greater volatility than what would be expected 

based upon a priori probability.   Chart 1 shows what the expected normal frequency distribution 

of returns one would expect from 1979-2009 (dashed line) on the ‘normal’ distribution. The 

actual realized returns on the market index (SPX) is (1) highly right skewed, (2) much larger 

frequency of returns (leptokurtosis) occurring around the mean.  The frequency of returns that 

occurred between 1 and 2 standard deviations was much smaller than expected and (3) finally 

very large negative returns occurred much more frequently than predicted. In this context, ‘fat 

tails’ simply refers to the larger -than-expected large positive or negative returns.  

ANALYSIS 

 

 The basic research question is: Did the samples come from normally distributed 

populations?  Null Hypothesis: There is no statistically significant difference between the 

expected and observed frequencies.  If there are no differences then the null hypothesis is 

rejected and it can be concluded that the sample in question was drawn from a normally 

distributed population.  Alternative Hypothesis: There is a difference between the observed and 



Journal of Finance and Accountancy 

Black swans and VAR, page 6 
 

expected frequencies.  The sample was not drawn from a normally distributed hypothesis.  A 

normal distribution is expected to have a 0 kurtosis, with a stable distribution expected to have a 

1 kurtosis.   Negative skewness indicates that the curve has a noticeable longer left (or negative) 

tail.   The distribution does not appear to log normal either, but appears to be more representative 

of a fat tail distribution.  See table 1. 

The SP500 fell over 23% in a single day on October 19, 1989. Then the U.S. stock 

market grew for an entire decade without experiencing any extreme fat-tail days (+5sigma). Even 

the day after September 11 terrorist attacks on NY, the stock market fell by only 4.9%, (a -4σ 

daily return). This “quiet” market environment appeared to change significantly starting in 2008.   

As shown in Table 2, there was a significant frequency increase in the observed number of actual 

black swan days.  For example, On September 29
th

, 2008 the stock market suffered the first and 

only $1 trillion dollar one day loss of wealth.  The frequency of actual black swan days occurred 

during the period under study is shown in Table 2.  In the thirty year period under study, there 

were five times (5X) the 3.4% daily price change threshold and 97 times (97X) the 4.5%  daily 

price change threshold predicated. A black swan day is defined as +/- 3 standard deviations away 

from the mean.   Deviations should occur with certain frequencies; the larger the standard 

deviations results in greater variance and thus greater risk.  There is a reverse correlation 

between the level of volatility and the expected frequency associated with the event. 

 

OBSERVATIONS 

 

Under the statistical normal distribution assumption of performance returns, deviations 

from the mean return should occur with a certain frequency; the greater the deviance, the lower 

the frequency associated with occurring  Table 4 shows the daily performance of the S&P 500 

relative to what would be predicted based upon the analysis.  Clearly the probability for 

significant negative returns, which is commonly referred as three standard deviations from the 

mean (99.9%), exceeds the probability based on the model output. 

   Employing a Chi-Square goodness-of-fit test, the p-Value of 0.000 indicates that there is 

no chance that the observations come from a normal distribution. See table 3.  In Table 3, the p-

value corresponding to the computed value of the chi-square test statistic is 0.000.  The null 

hypothesis is strongly rejected.  The statistical evidence suggests that there is virtually no chance 

that these test samples were selected from a normally distributed population. 

   The distributions are “pinched” around the mean.  In other words, the actual 

distributions are not mesokurtic / thin tailed like the normal, they are leptokurtic / fat tailed.  The 

appropriate theoretical probability distribution to use in a model (like VaR) would have to be 

leptokurtic (very peaked in the center, pinched around the mean, and fat tails) and skewed left.   

Figure 4 shows the number of days in a particular year where the daily percent return was more 

than 3 standard deviations below the mean.  In the time period under investigation, there were 53 

such days.  Note that more than a third of these “bad days” took place in 2008, and another 13 

percent of them took place in 2009.  In fact, 2008 and 2009 combined account for 26 of the 53 

“bad days.”  This is almost half of them. See Figure 2 
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The expected values were determined by multiplying the number of observations in the 

sample by the following values which were derived from the normal distribution:  It is 

interesting to note the volatility in returns for 2008 and 2009 with 26/53 3+/- standard deviation 

day movements occurred in this time period.  The clustering effect is clearly evident. See Figures 

4,5,6.  Notes on Q-Q Plots (Figures 5, 6 and 7).  A Q-Q plot can be employed to check the 

assertion that a variable is normally distributed.  If the variable is normal, the plot of points will 

lie along the line.  Notice that the horizontal axis measures the percent return and the vertical 

axis represents the percentile.  Note how the vertical axis is stretched at the ends and then packed 

around the center – this is because you’re making a nonlinear relationship linear.  The most 

striking thing about the Q-Q plots is that you can see that the variables (daily, weekly, and 

monthly S&P 500 percent returns) are not normal, and in particular there is a strong deviation 

from normal in the tails – and in particular, the left side tail. 

 

CONCLUSIONS 

 

A VaR model typically assumes a log-normal price diffusion process, and that the log-

return process follows a normal distribution. However, real financial markets exhibit several 

deviations from this ideal, albeit, useful model. The market distribution for stocks has several 

realistic properties not found in the prevalent log-normal models.  Today, most financial models 

measure VaR based on the thin-tailed and symmetric normal, “bell-shaped” distribution curve. 

As demonstrated by the stock market meltdown of 2008, these normal distribution assumptions 

resulted in overly optimistic VaR estimates; inadequately accounting for extreme events.  

The purpose of this paper was to empirically examine the underlying stock return 

distribution for the past thirty year period.   In 2008, most financial strategies/models were  

predicated on the flawed assumption of normally distributed returns demonstrated how fat-tail 

risk can wipe out an investor.  For example, Bear Sterns, Fanny, Freddy, Merrill Lynch and AIG 

all succumbed to the black swan market credit market event of 2008/09 and subsequently failed 

because of their exposure to certain fat tail risks.  It appears that professional investors have 

become much better at understanding and managing predictable portfolio risks based on assumed 

probabilities of recent financial hedging tool that have been recently developed. Unfortunately, 

the recent financial history has also witnessed financial events that could not be predicted based 

on prior events and have often been quite severe and have resulted in large losses being posted. 

Unfortunately, the recent financial history has witnessed a number of extreme, and often 

severe, events that could not be predicted based on prior events.  It would appear that modern 

finance techniques and tools may in fact, be making the tails of the distribution much fatter. By 

hedging idiosyncratic risk, such as foreign exchange rates, interest rates, commodity prices and 

so forth, one can make their portfolio appear to be relatively safe. However, swapping everyday 

risk for the exceptional risk results in these ‘black swan’ events occurring much more frequently 

than conventional theory would suggest.  As a result, financial markets today appear to be 

plagued not only by ‘black swans’ but also by pernicious “gray” swans that occur a lot more 

frequently than expected.   
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SUMMARY 

 

  If the observations do not appear to be symmetrically spread around the expected value, 

the distribution is said to be skewed.  If the distribution is skewed, the average and the median 

return will be quite different.  If one assumes that the variables are symmetrical about the mean, 

thereby ignoring skewness risk, the results of the financial model will substantially understate the 

risk/return characteristics. Kurtosis risk will cause any model to understate the risk of variables 

with high kurtosis. For instance, Long-Term Capital Management (LTCM) ignored kurtosis risk 

to its detriment. LTCM had to be bailed out by major investment banks in the late 90s because it 

understated the kurtosis of many financial securities underlying the fund's own trading positions.  

If skewness risk and kurtosis risk is ignored, the resultant conclusions based on the VaR model 

will be subjected to serious estimation error.  

 The VaR measure should be considered as an insufficient risk performance measure, 

since it ignores both the skewness and kurtosis of the return.  It also ignores all the fractional 

moments resulting from the long-term interdependencies of stock market price changes/returns. 

As a result, the VaR methodology gives far too little importance to extreme outliers that when 

they occur are not only catastrophic in nature but also appear to cluster. This is not limited to 

VaR however; the Black-Scholes model of option pricing is also predicated on a normal 

distribution. If the stock return distribution is actually a fat-tailed one, then the model will under-

price options that are far out of the money, since a 5 or 7 sigma event is more likely than what 

could be expected under a Gaussian distribution or bell shaped curve. 

 In summary, small price changes appear more frequently and large negative changes 

appear far greater than what a normal distribution would predict. Greater than-expected large 

price changes occurred with greater frequency of these events increased significantly in 2008 and 

2009.   As a result, there exists much fatter tails with higher probabilities and far less medium 

sized changes than the normal distribution model would suggest under the standard risk models 

being employed thus.  Extremely large stock price changes appear to have now become the new 

norm post 2008.  As a result, VaR fails to adequately measure the tail beyond the 99% 

confidence interval leaving out some reasonably uncommon, but extremely large potential for 

financial losses due to the existence of black swan events; exactly the kind of losses that 

portfolio risk managers should be most concerned about.  Black swans appear to be alive and 

well, both in nature and in the capital markets. 

  



Journal of Finance and Accountancy 

Black swans and VAR, page 9 
 

Chart 1: Histogram 
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Figure 1: Histogram of S&P 500 Daily Returns
1/7/1980 to 3/31/2009

Normal Distribution for Comparison Purposes
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Figure 2: Histogram of S&P 500 Weekly Returns
4/9/1979 to 3/20/2009

Normal Distribution for Comparison Purposes
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Figure 3: Histogram of S&P 500 Monthly Returns
5/1/1979 to 3/2/2009

Normal Distribution for Comparison Purposes

 
         

 

Table 1: Descriptive Statistics for S&P 500 Returns 

 Daily Returns Weekly Returns Monthly Returns 

Dates 4/9/79 – 3/31/2009 4/9/1979 – 3/20/2009 4/1/1979 – 3/2/2009 

Number of Observations 7377 1564 359 

Mean 0.0338% 0.1574% 0.676% 

Median 0.0483% 0.3049% 1.015% 

Standard Deviation 1.1376% 2.2935% 4.447% 

Skewness -0.82 -0.50 -0.70 

Kurtosis 22.79 5.31 2.36 

Maximum 11.58% 12.0258% 13.177% 

Minimum -20.4669% -18.1955% -21.763% 

 

 
   

 

Table 2: Number of Daily S&P 500 Percent Returns More Than 3 Standard Deviations Below 

the Mean 

Year Number 

of Days 

Percent 

1982 1 1.89 

1983 0 0.00 

1984 0 0.00 

1985 0 0.00 

1986 1 1.89 

1987 6 11.32 

1988 2 3.77 

1989 1 1.89 

1990 0 0.00 

1991 1 1.89 

1992 0 0.00 

1993 0 0.00 

1994 0 0.00 

1995 0 0.00 

1996 0 0.00 

1997 1 1.89 

1998 3 5.66 

1999 0 0.00 

2000 2 3.77 

2001 3 5.66 

2002 4 7.55 

2003 1 1.89 

2004 0 0.00 

2005 0 0.00 

2006 0 0.00 

2007 1 1.89 

2008 19** 35.85 

2009 7* 13.21 

Total 53 100.00 
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Black Swan events 1916-2010: 

 

Daily change + or –  Expected  Actual  Actual vs. Expected 

>3.4%   81   425   5x 

>4.5%   2   194   97x 

>7.0%   1 in 75,600,000 44 

 

 

Table 3: Results of Chi-Square Analysis of S&P Returns 

Range of 

Z Scores 

Observed 

Frequencie

s 

Daily 

Expected 

Frequencies 

Daily 

Observed 

Frequencie

s 

Weekly 

Expecte

d 

Freque

ncies 

Weekly 

Observed 

Frequenc

ies 

Monthly 

Expected 

Frequencie

s 

Monthly 

Z ≤ -3 53 9.96 15 2.11 3 0.48 

-3 < Z ≤ -

2 

118 157.87 23 33.47 10 7.68 

-2 < Z ≤ -

1 

596 1002.61 153 212.56 32 48.79 

-1 < Z ≤ 

0 

2856 2518.07 543 533.86 114 122.54 

0 ≤ Z < 1 3001 2518.07 651 533.86 153 122.54 

1 ≤ Z < 2 595 1002.61 143 212.56 40 48.79 

2 ≤ Z < 3 101 157.87 26 33.47 7 7.68 

Z ≥ 3 57 9.96 10 2.11 0 0.48 

Total 7377 7377 1564 1564 359 359 

χ
2
 = 907.35 P-Value = 

0.000 

χ
2
 = 178.41 PValue 

= 0.000 

χ
2
 = 

29.83 

P-Value = 

0.000 
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Figure 4: Q-Q Plot for Daily S&P 500 Returns
Normal 
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Figure 5: Q-Q Plot for Weekly S&P 500 Returns
Normal 

 
 

 

 



Journal of Finance and Accountancy 

Black Swans and VaR, Page 13 

151050-5-10-15-20-25

99.9

99

95

90

80

70
60
50
40
30

20

10

5

1

0.1

Percent Return

P
e

rc
e

n
ti

le

Figure 6: Q-Q Plot for Monthly S&P 500 Returns
Normal 
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Figure 7: Number of Daily S&P 500 Percent Returns

More Than 3 Standard Deviations Below the Mean
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