
Journal of Instructional Pedagogies Volume 20

Quantitative model for choosing, Page 1

Quantitative model for choosing programming language for online

instruction

Steven J. Sherman

Troy University

Ronald F. Shehane

Troy University

Dewey W. Todd

Troy University

ABSTRACT

Colleges are increasingly offering online courses, including computer programming

courses for business school students. Programming languages that are most useful to students

are those that are widely used in the job market. However, the most popular computer languages

change at least every three years. Therefore, the language used for instruction in a business

programming course must be re-evaluated regularly. This paper establishes a quantitative model

for choosing the best language for an online business programming course. Factors considered in

the quantitative model include platform compatibility, marketability of the language, object-

oriented programming support, availability of an interactive development environment, and the

availability of interactive online teaching tools and videos. The paper next presented an example

of the quantitative model used for selecting a language for a new online business programming

course at a selected university. The final section of the paper presents the results and conclusions

of the analysis.

Keywords: Online Teaching, Programming Course, Programming Languages, Computer

Language, Selecting Program Languages

Copyright statement: Authors retain the copyright to the manuscripts published in AABRI

journals. Please see the AABRI Copyright Policy at http://www.aabri.com/copyright.html

Journal of Instructional Pedagogies Volume 20

Quantitative model for choosing, Page 2

INTRODUCTION

The foundation of a programming course is the language chosen for the instruction (Wu

& Chang, 2011). Chen, et al. (2005) analyzed the historical trends of high-level programming

languages. Their research showed that the top three programming languages changed at least

every three years. This means that choosing the correct programming language for a business

applications programming course needs to be re-examined regularly. Looking at it another way,

a programming course that has been using the same programming language for more than three

years may be out of date.

 The selection of a programming language for introductory courses is a critical and often

controversial process (Stroustrup, 2009). However, the development of quantitative models that

guide the selection of programming languages for introductory computer programming courses

are generally lacking in research literature, particularly as applied to online teaching

environments. Clarke (2001) focused his research on the use of questionnaires to assess the

cognitive aspects of languages in evaluating programming languages, but did not provide a

complete quantitative model for evaluation. Gupta (2004) addressed the needs of beginning

programming students, but did not provide a useful formal evaluation approach. Parker et al.

(2006) developed a list of possible criteria for evaluation, but was missing details that would

enable full use of the criteria for evaluating the acceptability of programming languages for

course use. Articles by (Feldman, 1992, Gries, 1974, McIver 2002, Schneider, 1978) addressed

various aspects of programming selection, but failed to provide a quantitative model that would

guide the selection process. Farooq, et al. (2014) provide the most complete evaluation approach

for language selection to date, but only address the technical and environmental aspects of

languages and did not focus on teaching considerations nor online learner needs that should be

considered in a more practical and useful evaluation tool for selecting a programming language

to be used in an online environment.

 How can faculty committees perform repeated evaluations of programming languages in

a consistent way to ensure continuity and appropriate choices? This paper will address those

questions by establishing a quantitative model for evaluating business programming languages

for online instruction. The first part of this paper describes the challenges in teaching

programming in an online environment. The second section of this paper presents a quantitative

model for evaluating programming languages for suitability in an online learning environment.

The third section demonstrates the application of this quantitative model in choosing a

programming language.

ONLINE PROGRAMMING INSTRUCTION

In the 2000-01 school years, 89 percent of public two-year and four-year institutions were

offering online courses. Of the four-year institutions, nearly half offered complete degree

programs delivered exclusively online (Durrington, Berryhill, & Swafford, 2006). These

statistics make it clear that distance learning is not a trend – it is the new reality and an

increasing area of growth in education. (Allen & Seaman, 2010; Mosca, et al., 2010). While the

growth of online education is clear, studies have indicated that successful completion rates and

student perception of technical topics such as computer programming were deficient in online

environments when compared to similar in class courses (Coffey, 2013; Courte, 2007). In

addition, online completion rates appear to be deficient in online environments (Coffey, 2013).

Journal of Instructional Pedagogies Volume 20

Quantitative model for choosing, Page 3

Therefore, any evaluation tool applied to online education should consider adjusting for the

following quality issues involved (Coffey, 2013).

 Traditional teaching environments allow the instructor to take advantage of many

methods to engage the student, involving both participation and feedback. Active learning is the

concept of having the students participating in the instruction process, rather than passively

listening to a lecture. In computer programming classes, active learning (such as programming

exercises) has been effective in engaging students and increasing their retention (Ali, 2005). To

accomplish this in an online course, instructors can take advantage of advanced web technologies

and applications (Singh, Mangalaraj, & Taneja, 2010). Research has shown that online

instruction can be as effective as a traditional classroom setting, given the appropriate use of

technology – particularly when sufficient interactivity is employed (Durrington, Berryhill, &

Swafford, 2006). Ideally, the interactions with the learning tools will also include feedback to the

student. Ebrahimi (2011) evaluated the impact of early feedback on the success of students

learning programming online. Early feedback on programming assignments consistently

improved student performance.

 One key area of difference between online teaching and in class teaching is that teachers

and their students have less face-to-face interaction. Therefore, teachers have less impact on their

student’s learning approach in an online environment. The teacher can control the learning tools

and components they provide, but students face a more flexible learning environment where they

choose their learning strategies, learning pace, and direction. Depending on the student’s

orientation, an online environment can represent a complexity that challenges their skills in self-

regulation and learning styles (Azevedo, Cromley, &Seibert, 2004; Corbeil, 2003; Guglielmino

& Guglielmino, 2002; Kearsley, 2002; Yen & Liu, 2009; Zacharis, 2011). Students that are

lacking in self-regulation are more subject to dropping their courses which results in higher drop-

out rates when compared to in-class face-to-face environments (Allen & Seaman, 2005;

Summers, Waigandt & Whittaker, 2005). Meyer (2003) found that students with independent

and self-regulating styles tend to be better acclimated to online learning. One solution to

supporting students with differing levels of independence and self-regulation is for educators to

develop assignments, materials, and approaches that encourage the development of self-

regulation and independent learning (Ambrose, et al. 2010, Weimer, 2002). Scaffolding is a

term used to describe tools that educators develop and use to encourage and support independent

and self-regulated behavior (Stachel, et al., 2013). Scaffolding is especially important in teaching

computer programming to beginning learners. Beginning learners face many simultaneous

challenges in their first programming course. They are expected to absorb a new world of

interfacing with a language, an unfamiliar syntax, new form of logic and algorithmic thinking,

and programming theory that can easily overwhelm and confuse a beginning learner, especially

in an online environment, where face-to-face interaction is a challenge (Al-Imamy, Alizadeh, &

Nour, 2006; Kelleher & Pausch, 2005; Stachel, et al., 2013).

 The teaching of online programming courses is highly dependent upon the technology

tools and software provided for the course (Fortune, et al., 2006). One area that is particularly

challenging for online programming courses is providing hands-on lab opportunities with timely

and personal feedback on programs developed by students (Jaggars, 2014; Kearsley, 2002;

Steinbronn & Merideth, 2007). The availability of more sophisticated online tools has a direct

implication on the choice of a programming language. Programming languages typically have

tools that support using them. However, do they have tools to help with teaching them? For a

Journal of Instructional Pedagogies Volume 20

Quantitative model for choosing, Page 4

language to provide the best online class experience, there must be a rich set of tools to support

the language and to assist in teaching the language.

PROGRAM SELECTION CRITERIA

A review of literature indicates that the following criteria be considered in a

programming language selection quantitative model for online programming courses:

Must-Have Requirements

The following criteria were considered as necessary requirements before continuing to

considered programming languages using the Quantitative Model to rank languages. These

requirements tend to be a binary “yes or no” decision choice that eliminates languages from

further consideration and ranking.

Platform

One practical consideration is that the chosen language must match the hardware and

software platform requirements that the school and students will use. For example, if the school

uses Apple hardware and OS/X, but the teaching tools for the language are only available for

Linux or Windows, then the choice is untenable. However desirable the language might be, it

won’t be a practical choice if it doesn’t match the school’s existing or planned platform. The

quantitative model doesn’t aim to dictate any particular operating system or hardware. However,

some products may only be available in certain configurations. Therefore, it is incumbent upon

the school to have a preference and recommend it to the students.

 Whatever the decision, it must be binding on the choice of programming language and

associated software tools. Therefore, supporting the school’s desired platforms will be a

requirement for any candidate language.

Object Orientation

 Ultimately, the object-oriented requirement is yes or no criteria determined by the

faculty. The faculty can remove this restriction if they feel that the target market for their

students does not require object-orientation.

Object-oriented programming is an important part of software development today. From 1993 to

2003, the use of the top procedural languages (C, Pascal, Basic) fell off considerably, while the

popularity of object-oriented languages, like C++ and Java, rose dramatically (Chen, et al.,

2005). It’s important for students to understand object-orientation because even as object-

oriented languages evolve, the core concepts of object-orientation remain (Zhu, 2012). Of the top

five languages on the TIOBE index, only one is not object-oriented: the original C programming

language. By the same token, JavaScript is a very popular and useful language for Web

development applications and provides some object-oriented capabilities.

 One of the questions at this point is whether object-orientation should be a requirement

for the chosen programming language. The concepts introduced by object-oriented languages

(such as polymorphism, inheritance, and encapsulation) are more challenging for students than

the basic concepts like variables, operators, conditions, and looping (Milne & Rowe, 2002). This

Journal of Instructional Pedagogies Volume 20

Quantitative model for choosing, Page 5

creates a tension between the popularity of object-oriented languages and the challenges in

teaching them. One potential bonus from taking the object-oriented approach is that students can

move more comfortably from object-oriented to procedural programming than the other way

around (Zhu, 2012).

Interactive Development Environment

To be productive in the use of many of today’s programming languages and situations,

the availability of an integrated development environment (IDE) is essential (Spinellis, 2006).

Most IDEs have a common set of features: project organization, a code editor, multiple windows

and navigation, plus the critical feature of interactive debugging (Fesq, 2002). In a workgroup

setting, the IDE also controls updates to the source code repository. The availability of IDEs is

even more important when teaching object-oriented programming to beginning learners and

should typically be closely related to instructional and learner needs (Moons & Backer, 2013;

McIver, 2002; Uysal, 2014). That makes IDEs particularly useful in a business programming

environment. The use of IDEs has become so prevalent that in business development settings,

IDEs are one of the most used application development tools (Binstock, 2007). IDEs have dual

importance in the selection of a programming language. They are not only a critical tool for the

individual programmer, but they are also a critical element in business settings. Because of this

dual importance, the availability of an IDE for the programming language is an absolute

requirement in programming language selection.

Want-To-Have Requirements

The following requirements are considered as desirable and are included as ranking

factors in the Quantitative Model for language selection. These requirements can be scored from

1 to 10 and can be assigned different percentage weights to identify the final language choices.

Marketability

An important aspect to consider when selecting programming languages to teach is how

well the language aligns with the current IS business market needs (Farooq, 2014; Vitkute-

Adzgauskiene & Vidziunas, 2012). Chen, et al. (2005) provide an example of the importance of

IS programs maintaining relevance by keeping up with industry needs. They provided the

example of the period 1993 to 2003 in which Fortran use was trending upward in its use by

students, while its use in industry was on the decline. For this quantitative model, we decided

that the programming language chosen should be a language that students are likely to use in

business. We refer to this criterion as marketability.

Therefore, the languages that are most widely in use today, and in demand in the business

environment are favored criteria. We want to prepare our students to understand a language that

they are most likely to encounter. In addition, the most widely used languages typically have the

most support by textbooks and other learning tools.

 One of the most-used measures for determining the current trends in programming

languages is the TIOBE index (Vitkute-Adzgauskiene & Vidziunas, 2012). The TIOBE index

doesn’t claim to show the best programming language. It assembles data on the most popular

Journal of Instructional Pedagogies Volume 20

Quantitative model for choosing, Page 6

languages in current use. Monthly changes in the index indicates trends over time in the

popularity of languages.

 A literature search reveals that there are few scholarly articles related to the current

marketability of programming languages at any given point in time. One of the reasons is fairly

obvious: scholarly articles tend to have a lead time for publishing that makes their information

less timely. Although the TIOBE index is a well-regarded and well-researched measure, other

indicators are possibilities. Articles are available in the popular press that rank programming

languages by the number of job postings for positions requiring that language. Faculty

committees can combine several of these job board summaries for a more comprehensive view.

Job market demand is an indicator of the current marketability for a programming language.

 The Popularity of Programming Language (PYPL) index uses raw data from Google

Trends to determine how often people search for tutorials on each programming language

(http://pypl.github.io/PYPL.html). If students are learning a language today, it is likely because

they are planning to use it in the future. As such, the PYPL index is a leading indicator of where

language use could be going.

 Combining the TIOBE index, job market indicators, and PYPL gives a balanced

perspective on the past, present, and future popularity of current programming languages. Use of

a summary of those rankings can establish the candidate languages for the analysis as well their

relative popularity.

Interactive Tools

In recent years, there has been a lot of growth in the population of non-traditional

learners. In particular, distance learning has removed a big barrier to higher-level education. For

this quantitative model, the availability of teaching aids that would work in an online

environment was a highly-desired feature (El-Bishouty, Ogata & Yano, 2007).

 Courseware (the learning software used for the course) is the ingredient that can provide

interactivity and feedback. Given the importance of those features, choosing the right courseware

is essential. Ideally, the courseware is coordinated with the textbook to introduce and reinforce

concepts consistently (Hsieh, 2011; Huan, Shehane, & Ali, 2011)

Video Support

Thomas Edison once said, “It is possible to teach every branch of human knowledge with

the motion picture” (Reiser, 1987, p. 11). The role of video in online learning continues to grow

significantly. Online video is now an accepted tool for traditional and distance learners

(DeCesare, 2014). Without an instructor in a classroom, the videos fill the role of presenting the

information both visually and verbally. A step-by-step video greatly simplifies teaching

programming languages, in particular (Singh, Mangalaraj, & Taneja, 2010). Research indicates

that visual teaching approaches led to improved comprehension of programming and debugging

tasks (Baecker, DiGiano, & Marcus, 1997; Naharro-Berrocal, et al., 2002). Research indicates

that student outcome measures improved when videos supplemented instructions in introductory

computer programming courses (Shehane & Sherman, 2014).

Journal of Instructional Pedagogies Volume 20

Quantitative model for choosing, Page 7

Textbook

Students gain leverage from having a textbook that has companion software designed to

match its content (Hsieh, 2011; Huan, Shehane, & Ali, 2011). If there were no such products, the

alternative would entail matching unrelated books and software. Fortunately, there are learning

products available from most major publishers. Due to the availability of coordinated textbooks

and tools, only those type of textbooks will be considered for adoption in this quantitative model.

 Our implementation of the quantitative model is to consider the number of recently

published textbook editions for each language. The textbook choices are further reduced by

eliminating books that do not provide companion software. Recall that the goal at this stage is to

choose the language, not necessarily a specific textbook. Rather than identifying a specific

textbook at this evaluation point, the language with the most textbook options could be

considered to have the best textbook.

QUANTITATIVE MODEL

The overall approach proposed for the quantitative model is a simplified form of Kepner-

Tregoe (KT) analysis that quantifies language requirements (Ozturk, Coburn, & Kitterman,

2003). K-T analysis divides language requirements into musts and wants. A candidate language

is required to have the must-have-criterion satisfied to avoid elimination before applying scores.

Want-to-have criteria determine the evaluation of the remaining choices. The best choice

receives a score of 10, with other choices ranked proportionally to that top score.

Each want-to-have criterion is weighted and the total of criterion weights add up to 100

percent. Personal bias can affect the weightings as well as judgment regarding the rankings in

each category. Reaching consensus on these numbers can be difficult, but it makes the resulting

solution very clear. As a starting point, marketability can have half of the weight and language

learning tools availability can be the other half of the weight.

 If a small change in the weights would result in a different winner, then there should be a

serious review to determine if the weightings are appropriate. Consider the case where one

language is rising in use while another is declining. There is likely to be a crossover point where

they are roughly equivalent in popularity. When this happens, it is important to consider the

trend line. Preference should go to the language that is on the rise in terms of usage.

 Table 1 compiles the results for each of the quantitative model want-to-have criterion.

The weighted score is then computed and will be used to determine the best choice. The

recommended weights displayed below are examples only.

 The language with the highest weighted score is the best choice, given the accepted

assumptions inherent in the model. The use of normalized scores, on a scale of 1 to 10, permit

valid comparisons from year to year. Table 1 only shows three languages, but can easily include

more candidates.

MUST-HAVE-CRITERIA

The university selected was making its newly designed Information Systems curriculum

available online. To create the online version of the introductory business programming course,

the initial task was to choose a programming language for the course. A faculty committee

evaluated each language in terms of meeting the must-have-criteria. Based on the evaluation,

Journal of Instructional Pedagogies Volume 20

Quantitative model for choosing, Page 8

only those programming languages that met the following must-have-criteria were considered for

scoring in the quantitative model.

Platform Support

At this point, the committee began culling the list by confirming the must-have features.

The university selected supports students using both Windows and Mac computers. This is an

issue with C#, Visual Basic, and Objective-C. C# is a Microsoft language designed to work with

their operating system and .NET quantitative model. Support of C# and .NET use on other

platforms is dependent on third-party software emulation (Binstock, 2004). Visual Basic has the

same issues, being a Microsoft-specific implementation. Objective-C has subsisted on the fact

that it is the language Apple chose for development on both OS/X and iOS. The faculty

committee avoided selecting these languages due to their platform-specific issues.

Object-Oriented Support

Object-orientation was a firm requirement of the selected university, eliminating C from

the list going forward. In addition, PHP is not fully object-oriented, but is a language that can

support object creation; as such it was eliminated from further consideration. All other candidate

languages provided adequate support of object-oriented programming and remained in

consideration.

Availability of an IDE

There are multiple IDEs available for JavaScript, with Eclipse being the most popular.

Eclipse is also available for C++ (eWeek, 2011). JetBrains, which also makes a popular Java

IDE, develops the PyCharm IDE for Python (eWeek, 2010). Visual Basic uses the Visual Studio

development environment produced by Microsoft (Heller, 2013). All remaining languages have

at least one IDE available to work with them, which means that these languages can continue in

the evaluation.

WANT-TO-HAVE-CRITERIA

A faculty committee evaluated the following want-to-have-criteria using the quantitative

model.

Most Marketable

Candidates consisted of a list of the most marketable languages. The first measure used

was the recommended TIOBE index https://www.tiobe.com/tiobe-index//. Although it is a

monthly snapshot, the index also provides a historical graph which tells more than the rankings

alone. A graph helps visualize and better understand trending.

 Other marketing data is also available on the internet that can be used to assess

marketability. The committee used Computerworld’s top 10 list and IT CareerFinder.com’s list

of the most marketable programming languages. Finally, the study also used the current rankings

from the PYPL index. Even though languages like HTML, XML, and SQL are popular, they

Journal of Instructional Pedagogies Volume 20

Quantitative model for choosing, Page 9

were eventually eliminated as candidates for an introductory programming course due to the

committee’s requirement that only object-oriented languages be considered. JavaScript is not

widely considered as an object-oriented language, mainly due to lack of true inheritance.

However, JavaScript was still considered in the analysis because it can support an object-

oriented approach because it supports inheritance through prototyping as well as properties and

methods.

 Table 2 summarizes the data from the preceding sources and shows the results that

formed the initial candidate list:

Best Interactive Tools

The university had been using a product from a major publisher for online instruction in

computer programming. The product being used had exercises that were interactive and

consisted of small programming challenges that require students to type the solutions into the

software package. The software also gave the students instant feedback. The code was checked

and either accepted as correct or the student received feedback about mistakes and possible

corrections. The dual benefits of interactivity and rapid feedback met student needs. The faculty

committee considered the capabilities of the existing product as essential and so other similar

products were considered in the evaluation. The programming languages that were supported by

the interactive tools were Java, C++, Python, and Visual Basic. The list of candidate languages

focused on these four because of the interactive tools’ availability.

5.2.3 Best Videos

Online informational videos are widely available, particularly from sites like YouTube

(DeCesare, 2014). But it would be an ongoing chore to match assorted online videos with the

content of the textbook and course. A better solution would be textbook supportive videos.

Fortunately, textbooks were found that supported videos. These videos were available for a

variety of books covering all programming languages remaining in the committee’s analysis.

Most of the textbooks contained notations that indicated the videos available for specific topics.

The videos were typically short, topic-related videos of the kind shown to enhance learning,

particularly for computer programming (Shehane & Sherman, 2013).

5.2.4 Best Textbook

Choosing the right textbook for an online computer programming course is essential

(Huan, Shehane, & Ali, 2011). However, because the features of an interactive product tool were

so highly desired, the faculty committee only considered books that had the companion

interactive tool feature. The list of possible textbooks was limited to those that supported both

features. The textbook titles varied by language as summarized in Table 3.

The faculty committee noted that the rankings of the languages by number of titles was

also basically consistent with the marketability rankings.

 It is worth mentioning that term length was a factor because the course in question runs

for 9 weeks. Some books are suited for shorter courses, while others are suited for semester

length.

Journal of Instructional Pedagogies Volume 20

Quantitative model for choosing, Page 10

5.8 Language Choice

At this point, all remaining languages considered had satisfied the must-have conditions.

All languages rated equally for the best interactive tools and best videos. Clearly, there could be

differences in the quality and number of videos and the completeness of the interactive exercises.

However, the faculty committee deferred investigating these details with the proviso that they

could investigate these areas later if necessary. For best textbook choice, each of the languages

was being scored in proportion to the number of titles available. The resulting scores and

weighted calculations are shown in Table 4.

 From the popularity rankings to the number of textbook choices, Java is the top choice.

With the other factors considered, it was a close finish between Java and C++. But on the TIOBE

index, Java’s usage percentage is higher than the other three languages combined.

 It could have been a requirement that the programming language chosen for this course

would have to be compatible with the choices for other courses in the curriculum. It would

clearly be preferable to use the same language across many courses. The students would have a

better chance at mastery by re-using, practicing, and adding to their knowledge in a series of

courses. Coordination among courses can become problematic, if the analysis for a given course

indicates that a different language would be superior to that used by the other courses. Should

that new analysis precipitate a reconsideration of the language for the other courses? It could be

that the common language is still the second-best choice for the course. Some situations might

dictate that two different languages are the best solution. The quantitative model can’t resolve

that issue, but it can contribute by ranking the alternatives for each course.

CONCLUSIONS AND FUTURE RESEARCH

Java was the recommended programming language for the new online course at the

selected university. A faculty committee reviewed and approved the quantitative model analysis.

A faculty member developed the course using Java and faculty members are currently teaching

the course online.

 Because programming languages evolve and their usage shifts, the faculty committee

needs to evaluates their choice of programming language for the online business programming

course on an ongoing basis. In addition, the popularity of a language is only a partial

consideration because as a language is emerging in popularity, there may be relatively few

learning tools to support it. Even if it were incrementally more popular than another language,

the lack of tools could keep it from the top rank overall. However, as the tool support grows, the

scales could tip in favor of shifting to that language.

 To provide structure and consistency to this process, the authors have proposed a

quantitative model for evaluating the available languages on the market. This quantitative model

focuses on choosing the language that is most relevant for business use and online delivery with

the strongest set of teaching tools.

 This article only considered the types of tools discovered through our current research.

Just as computer languages will evolve, the tools to support online learning will also evolve and

provide an increasingly rich interactive experience. Keeping abreast of developments in

interactive learning will be as important as the language delivered with those tools.

Journal of Instructional Pedagogies Volume 20

Quantitative model for choosing, Page 11

REFERENCES

Ali, S. (2005). Effective teaching pedagogies for undergraduate computer science. Mathematics

and Computer Education, 39(3), 243-257.

Al-Imamy, S., Alizadeh, J. & Nour, M. (2006). On the Development of a Programming Teaching

Tool: The effect of teaching by templates on the learning process. Journal of Information

Technology Education, 5, 1-13.

Allen, I. E., & Seaman, J. (2005). Growing by degrees—Online education in the United States.

Needham, MA: The Sloan Consortium.

Allen, I. E., & Seaman, J. (2010). Class differences: Online education in the United States,2010.

Needham, MA: Babson Survey Research Group.

Ambrose, A. A., Bridges, M. W., DiPietro, M., Lovett, M. C., & Norman, M. K. (2010). How

learning works: Seven research-based principles for smart teaching. San Francisco:

Jossey-Bass.

Azevedo, R., Cromley, J. G., & Seibert, D. (2004). Does adaptive scaffolding facilitate students’

ability to regulate their learning with hypermedia? Contemporary Educational

Psychology, 29, 344–370.

Baecker, R., DiGiano, C., & Marcus, A. (1997). Software visualization for debugging.

Communications of the ACM, 40(4), 44-54.

Binstock, A. (2004). Mono brings portability to .NET. Software Development Times, (107), 35.

Binstock, A. (2007). Java IDEs perk up. InfoWorld, 29(13), 21-26.

Brower, H. H. (2003). On emulating classroom discussion in a distance-delivered OBHR course:

Creating an on-line community. Academy of Management Learning and Education, 2(1),

22-36.

Chen, Y., Dios, R., Mili, A., Wu, L., & Wang, K. (2005). An empirical study of programming

language trends. IEEE Software, 22(3), 72-78. doi:http://dx.doi.org/10.1109/MS.2005.55

Clarke , S. (2001). Evaluating a new programming language. In 13th Workshop of the

Psychology of Programming Interest Group, 275–289.

Coffey, J.W. (2013). Perspectives Regarding Computer Science Curriculum Delivery through

Distance Education at Regional Universities. The International Journal of Technology,

Knowledge, and Society, 8(4), 73-82.

Corbeil, J. R. (2003). Online technologies, self-efficacy, self-directed learning readiness, and

locus of control of learners in a graduate-level web-based distance education program.

(Unpublished doctoral dissertation). University of Houston, Houston, TX.

Courte, J.E. 2007. Comparing Student Acceptance and Performance of Online Activities to

Classroom Activities. Proceedings of SIGITE’07, pp. 185–189. October 18–20, 2007,

Destin, Florida, USA.

DeCesare, J. A. (2014). The expanding role of online video in teaching, learning, and research.

Library Technology Reports, 50(2).

Durrington, V. A., Berryhill, A., & Swafford, J. (2006). Strategies for enhancing student

interactivity in an online environment. College Teaching, 54(1), 190-193.

Ebrahimi, A. (2011). How does early feedback in an online programming course change problem

solving?. Journal Of Educational Technology Systems, 40(4), 371-379.

Eclipse Turns 10 Tracing the Beginnings to a Little Java IDE 853952. (2011, November 2).

eWeek.

Journal of Instructional Pedagogies Volume 20

Quantitative model for choosing, Page 12

El-Bishouty, M. M., Ogata, H., & Yano, Y. (2007). PERKAM: Personalized knowledge

awareness map for computer supported ubiquitous learning. Journal of Educational

Technology and Society, 10(3). 122-134.

Ellis, R. D. & Kurniawan, S. H. (2000). Increasing the usability of online information for older

users - a casestudy in participatory design. Instructional Journal of Human-Computer

Interaction, 12(2), 263–276.

Farooq, M., Khan, S., Farooq, A., Islam, S., & Abid, A. (2014). An evaluation quantitative

model and comparative analysis of the widely used first programming languages. Plos

One, 9(2), 1-25. Retrived from http:://plospne.org.

Feldman, M.B. (1992) Ada experience in the undergraduate curriculum. Communications of the

ACM. 35(11), 53–67.

Fesq, B. J. (2002). Toward a consistent ide: Eclipse Platform/IDE. New Architect, 7(9), 48-50.

Fortune, M.. et al. (2006) “A comparison of online (high tech)and traditional (high touch)

learning in business and commun ication”, Journal of Education for Business, 2, 210-

214.

Gries, D. (1974) What should we teach in an introductory programming course?. In Proceedings

of the 4th SIGCSE Technical Symposium on Computer Science Education. ACM Press

:81–89.

Guglielmino, L. M., & Guglielmino, P. J. (2002). Learner characteristics affecting success in

electronic distance learning. In H.B. Long & Associates, Twenty-First Century Advances

in Self-Directed Leaning. Boynton Beach, FL: Motorola University Press.

Gupta, D. (2004) What is a good first programming language? Crossroads. 10(4, 7.

Heller, M. (2013). Review: Visual studio 2013 reaches beyond the IDE. InfoWorld.Com.

Hsieh, S. (2011). Effects of Cognitive Styles on an MSN Virtual Learning Companion System

as an Adjunct to Classroom Instructions. Educational Technology & Society, 14(2), 161–

174.

Huan, X., Shehane, R., & Ali, A. (2011). Teaching computer science courses in distance

learning. Journal of Instructional Pedagogies, 6, 1-14.

Jaggars, S. S. (2014). Choosing between online and face-to-face courses: Community college

student voices. American Journal of Distance Education, 28(1), 27-38.

Jenkins, T. (2001). Themotivation of students of programming.MSc Thesis submitted to the

University of Kent.

JetBrains Strikes Python Developers with PyCharm 10 IDE 304127. (2010, October 14). eWeek.

Kearsley, G. (2002). Is online learning for everybody? Educational Technology, 42(1), 41–44.

Kelleher, C., & Pausch, R. (2005). Lowering the Barriers to Programming: A Taxonomy of

Programming Environments and Languages for Novice Programmers. ACM Computing

Surveys 37, 83–137.

Kolling, M. (2013). This much I know: thoughts on the past, present and future of educational

programming tools. In Proceeding of the 44th ACM technical symposium on Computer

science education (SIGCSE ’13), 5–6.

McIver, L. (2002) Evaluating languages and environments for novice programmers. In 14th

Workshop of the Psychology of Programming Interest Group:100–110.

Meyer, K. (2003). The Web’s impact on student learning. T.H.E. Journal, 30(5), 14–24.

Milne, I., & Rowe, G. (2002). Difficulties in learning and teaching programming--views of

students and tutors. Education and Information Technologies, 7(1), 55-66.

doi:http://dx.doi.org/10.1023/A:1015362608943

Journal of Instructional Pedagogies Volume 20

Quantitative model for choosing, Page 13

Moons, J., & Backer, C. D. (2013). The design and pilot evaluation of an interactive learning

environment for introductory programming influenced by cognitive load theory and

constructivism. Computers & Education, 60, 368-384.

Mosca, J.B., Ball, D.R., Buzza, J.S., Dpaul, D.P. (2010). A comprehensive student-based

analysis of hybrid courses: student preferences and design criteria for success. Journal of

Business & Economics Research, 8(5), 7-21.

Naharro-Berrocal, F., Pareja-Flores, C., Urquiza-Fuentes, J., & Velazquez-Iturbide, J. A. (2002).

Approaches to comprehension-preserving graphical reduction of pro-gram

visualizations. Paper presented at the Proceedings of the 2002 ACM symposium on

applied computing.

Ozturk, O., Coburn, M.B., & Kitterman, S. (2003). Conceptualization, Design, and

Implementation of a Static Capacity Model. Proceedings of the 35th Conference on

Winter Simulation: Driving Innovation (pp. 1373-1376). New York, NY: ACM Press.

Parker, K.R., Ottaway TA, Chao JT, Chang J (2006) A Formal Language Selection Process for

Introductory Programming Courses, Journal of Information Technology Education. 5,

133–151.

Schneider GM (1978). The introductory programming course in computer science: ten

principles. In Papers of the 9th SIGCSE/CSA Technical Symposium on Computer

Science Education. ACM Press, 107–114.

Reiser, R.A. (1987). “Instructional technology: a history”, in Gagne, R.M. (Ed.), Instructional

Technology: Foundations, Lawrence Erlbaum Associates, Hillsdale, NJ, pp. 11-48.

Shehane, R. & Sherman, S. (2014). Visual teaching model for introducing programming

languages. Journal of Instructional Pedagogy, 14, 1-8.

Singh, A., Mangalaraj, G., & Taneja, A. (2010). Bolstering teaching through online tools.

Journal of Information Systems Education, 21(3), 299-311.

Spinellis, D. (2006). Choosing a programming language. IEEE Software, 23(4), 62-63.

doi:http://dx.doi.org/10.1109/MS.2006.97

Stachel, P., Marghitu, D., Brahim, T.B., Sims, R., Reynolds, L., & Czelusniak, V. (2013).

Managing cognitive load in introductory programming courses: a cognitive aware

scaffolding tool. Journal of Integrated Design and Process Science, 17(1), 37-54. DOI

10.3233/jid-2013-0004

Steinbronn, P.E. & Merideth, E.M. (2008) “Perceived Utility of Methods and Instructional

Strategies Used in Online and Face-to-face Teaching Environments.” Innovative Higher

Education, 32, 265 -278.

Stroustrup, B. (2009) Programming in an undergraduate CS curriculum, In Proceedings of the

14th Western Canadian Conference on Computing Education (WCCCE ’09). ACM, New

York: 82–89.

Stroustrup, B. (2010) Viewpoint: What should we teach new software developers? Why?

Communications of the ACM, 53(1): 40–42.

Summers, J. J.,Waigandt, A. &Whittaker, T. A. (2005). A comparison of student achievement

and satisfaction in an online versus a traditional face-to-face statistics class. Innovative

Higher Education, 29(3), 233–250.

Uysal, M. P. (2014). Interviews With College Students: Evaluating Computer Programming

Environments For Introductory Courses. Journal of College Teaching & Learning, 11(2),

59-70.

Journal of Instructional Pedagogies Volume 20

Quantitative model for choosing, Page 14

Vitkute-Adzgauskiene, D., & Vidziunas, A. (2012). Problems in choosing tools and methods for

teaching programming. Informatics in Education, 11(2), n/a.

Weimer, M. (2002). Learner-centered teaching: Five key changes to practice. San Francisco;

Jossey-Bass.

Wu, P. , & Chang, P. (2011). JavaScript for teaching accelerated programming basics courses.

Journal of Applied Global Research, 4(8), 27-38.

Yen, H. J., & Liu, S. (2009). Learner autonomy as a predictor of course success and final grades

in community college online courses. Journal of Educational Computing Research, 41(3),

347–367.

Zhu, X. (2012). Teaching adaptability of object-oriented programming language curriculum.

International Education Studies, 5(4), 237-242.

Journal of Instructional Pedagogies Volume 20

Quantitative model for choosing, Page 15

APPENDIX

Table 1. Model Ranking Results

Most

Marketable

Best

Interactive

Tools

Best Videos Best Book Score

Weight 50% 30% 10% 10% 100%

Language 1 10 10 8 10 9.8

Language 2 7 9 10 9 8.1

Language 3 3 5 7 8 4.5

Table 2. Most Marketable Results

TIOBE Computerworld ITCareerFinder PYPL
Weighted

Summary

C Java Java Java Java

Java JavaScript JavaScript PHP C++

Objective-C C++ C++ C# C#

C++ C# C# Python JavaScript

C# XML XML C++ C

PHP Perl C C Python

Visual Basic Python Perl JavaScript PHP

Python Python Objective-C Objective-C

JavaScript Ruby Perl

 Visual Basic Visual Basic

Table 3. Textbook Results

Language Number of Titles

Java 8

C++ 7

Python 3

Visual Basic 2

Journal of Instructional Pedagogies Volume 20

Quantitative model for choosing, Page 16

Table 4. Language Choice Results

 Most

Marketable

Best Interactive

Tools
Best Videos Best Book Score

Weight 50% 30% 10% 10% 100%

Java 10 10 10 10 10

C++ 9 10 10 9 9.4

Python 5 10 10 5 7

Visual Basic 1 10 10 3 4.8

