
Journal of Business Cases and Applications Volume 24

Calculating distance between zip codes, Page 1

Calculating distance between zip codes:

A database case study in consuming web services

Mohammad Dadashzadeh

Oakland University

ABSTRACT

 Travel distance is a variable in predicting consumer behavior in choosing a service location.

In predictive modeling applications in medicine, there is often a need to calculate the distance of a

patient from one or more healthcare facilities. With de-identified patient data, a patient’s zip code

becomes the basis for calculating distance. Therefore, the problem of calculating distance between

zip codes is a recurring data pre-processing step in such applications. This paper presents the

development of a case study for the database course to automate a solution to the problem while

providing teaching opportunities in Structured Query Language (SQL), Microsoft Access Visual

Basic for Applications (VBA) programming, and consuming web services.

Keywords: IS Curriculum, Database Course, Location Analytics, Travel Distance Calculation,

Geocoding API, Map Web Services

Copyright statement: Authors retain the copyright to the manuscripts published in AABRI journals.

Please see the AABRI Copyright Policy at http://www.aabri.com/copyright.html

Journal of Business Cases and Applications Volume 24

Calculating distance between zip codes, Page 2

INTRODUCTION

 Travel distance is a variable in formulating an understanding of why a specific service

location amongst several competing ones is chosen by a consumer. The need to calculate

geographic distance occurs in various contexts including tourism research (Nyaupane, Graefe, &

Burns, 2003), emergency medical services (EMS) system planning (Hsia et al., 2017), and

healthcare provision (Tsai, Orav, & Jha, 2015).

 To fix ideas, let us consider an example of calculating distance between patients and

hospitals. The data structure in Microsoft Access consists of two tables: tbl_Hospitals (Figure 1)

that records the zip code of 14 service locations of interest, and tbl_Zipcodes (Figure 2) that

captures the 1,505 distinct patient zip codes for which the distance to each service location needs to

be calculated.

Figure 1. Microsoft Access Table Listing Various Service Locations

Figure 2. Microsoft Access Table Showing 18 of 1,505 Distinct Patient Zip Codes

Journal of Business Cases and Applications Volume 24

Calculating distance between zip codes, Page 3

Given a user-defined function named fnDistanceBetweenZipcodes (Figure 3) to calculate

and return the distance between two zip codes, the following SQL statement would create the table

tbl_ZipcodeDistances (Figure 4) consisting of 21,070 (i.e., 1505 x 14) rows showing the desired

distances:

SELECT ID, tbl_Zipcodes.Zipcode AS Zip1, tbl_Hospitals.Hospital,

 tbl_Hospitals.Zipcode AS Zip2,

 fnDistanceBetweenZipcodes([Zip1], [Zip2]) AS Distance

INTO tbl_ZipcodeDistances

FROM tbl_Zipcodes, tbl_Hospitals

Figure 3. The Structure of VBA Function to Return Calculated Distance Between Zip Codes

Figure 4. Sample of the Output Table tbl_ZipcodeDistances Showing Returned Distances

Journal of Business Cases and Applications Volume 24

Calculating distance between zip codes, Page 4

 The final solution step would be to create a cross tabulation of data in the table,

tbl_ZipcodeDistances, that more clearly shows the distance between each distinct patient zip code

and the 14 service location zip codes (Figure 5). This can be accomplished using the Crosstab

Query Wizard in Microsoft Access as:

TRANSFORM First(tbl_ZipcodeDistances.[Distance]) AS FirstOfDistance

SELECT tbl_ZipcodeDistances.[Zip1]

FROM tbl_ZipcodeDistances

GROUP BY tbl_ZipcodeDistances.[Zip1]

PIVOT tbl_ZipcodeDistances.[Zip2]

Figure 5. Layout of the Desired Final Output

 As it has been outlined above, the software architecture of a solution to the problem builds

upon concepts, namely SQL and VBA programming, taught in a typical database course in the MIS

curriculum using Microsoft Access. However, the important new teaching opportunity that emerges

is in completing the function fnDistanceBetweenZipcodes to return the correct distance by utilizing

existing web services.

DISTANCE CALCULATION USING ZIP CODE WEB SERVICES

 Zip-Codes.com (2019) is a supplier of US and Canadian zip code database/directory. It also

provides a subscription-based Application Programming Interface (API) to its web services for

functions including obtaining the zip code of an address, distance calculations, and radius searching.

The Zip-Codes.com’s API is a RESTful service (Richardson & Ruby, 2007) in that it accepts HTTP

requests and provides responses in XML or JavaScript Object Notation (JSON) text formats. For

example, the request to calculate the distance between zip codes 32504 and 90210 and receive the

response in XML format can be sent via the following URL:

https://api.zip-codes.com/ZipCodesAPI.svc/1.0/XML/CalculateDistance/ByZip

?fromzipcode=32504&tozipcode=90210&key=DEMOAPIKEY

where, the API subscription key of DEMOAPIKEY is used. The XML response from the web

service would include text:

<DistanceInMiles>1835.096876886239</DistanceInMiles>

that can be parsed to obtain the calculated straight-line distance of 1835 miles.

Journal of Business Cases and Applications Volume 24

Calculating distance between zip codes, Page 5

 The Appendix gives the completed code for the Microsoft Access user-defined function,

fnDistanceBetweenZipcodes, that utilizes the Zip-Codes.com’s API to calculate the needed

distances.

DISTANCE CALCULATION USING HAVERSINE FORMULA

 The straight-line distance between two locations ignores the fact that there are no straight

lines on a sphere such as Earth. The haversine formula (Wikipedia, 2019) can be used to calculate

the shortest spherical distance between two points on the surface of a sphere, measured along the

surface. Although the formula would not be completely accurate since the Earth is not a perfect

sphere, it provides a good approximation for most applications. The basic formula utilizes latitude

and longitude coordinates of the locations and can be expressed as a VBA function in Microsoft

Access as shown in the Appendix.

 This approach to calculating distances between zip codes requires that we obtain latitude

and longitude coordinate values associated with each of our 1,505 distinct zip codes. Geocoding

web services that take an address and return an actual or calculated latitude/longitude coordinate can

provide that functionality. However, several sites including UnitedStatesZipCodes.org (2019)

provide a “personal” version of their zip code database at no cost. Figure 6 shows the data structure

of the zip code database as imported into Microsoft Access that supplies the needed latitude and

longitude coordinates for distance calculation.

Figure 6. Zip Code Database Supplying Latitude and Longitude Coordinates

DISTANCE CALCULATION USING ROUTING WEB SERVICES

 For applications requiring a more accurate calculation of travel distance between two

locations, the solution may be found by using one of the many routing web services available

including: Google Maps Platform’s Directions API (Google, 2019), Bing Maps REST Services

(Microsoft, 2019), ESRI’s ArcGIS REST API (ESRI, 2019), and HERE Technologies’ Routing API

(HERE Technologies, 2019).

Journal of Business Cases and Applications Volume 24

Calculating distance between zip codes, Page 6

 Using HERE Technologies’ routing web service, the request to calculate the fastest travel

route by car between zip codes 32504 (30.48°N, -87.19°E) and 90210 (34.10°N, -118.41°E) taking

traffic conditions into account and departing immediately can be sent via the following URL:

https://route.api.here.com/routing/7.2/calculateroute.json

?waypoint0=30.48, -87.19&waypoint1=34.10, -118.41

&mode=fastest; car; traffic:enabled

&app_id=devportal-demo-20180625&app_code=9v2BkviRwi9Ot26kp2IysQ

&departure=now

where, the values specified for request parameters app_id and app_code are developer assigned

subscription keys. The JSON response from the web service would include text:

"The trip takes 3369 km

that can be parsed to obtain the calculated routing distance of 3369 kilometers (or 2093 miles).

 The Appendix gives the completed code for the Microsoft Access function,

fnGetRoutingDistanceHERE_API, that utilizes HERE.com’s API to calculate the needed

distances.

SUMMARY AND CONCLUSIONS

 The IS 2010 Curriculum Guidelines for Undergraduate Degree Programs in Information

Systems (ACM/AIS, 2010) recognizes the “emergence of a new architectural paradigm – service-

oriented architecture, web services, software-as-a-service, and cloud computing” as a motivating

factor for IS curriculum revision. As such, core skill sets for modern application development must

include AJAX, XML, and web services in addition to the basic programming, web development,

and database skills that have been taught for many years. Dadashzadeh (2010) describes a case

study to expose IS students to web services as soon as they are introduced to the basics of HTML

and programming. In this paper, the challenge of solving a real-world problem in data preparation

for predictive modeling applications involving location analytics, that is, the problem of calculating

distance between zip codes, has been presented as a pedagogical opportunity for the database course

instructor to introduce students to modern web services and API’s in a hands-on manner.

Journal of Business Cases and Applications Volume 24

Calculating distance between zip codes, Page 7

REFERENCES

ACM/AIS. (2010). IS 2010 Curriculum Guidelines for Undergraduate Degree Programs in

Information Systems. New York, NY: Association for Computing Machinery.

Dadashzadeh, M. (2010). Consuming Web Services: A Yahoo! Newsfeed Reader. Journal of

Information Systems Education,21(4), 355-360.

ESRI. (2019). Routing and Direction with ArcGIS. Retrieved from

https://developers.arcgis.com/features/directions on January 21, 2019.

Google. (2019). The Directions API. Retrieved from

https://developers.google.com/maps/documentation/directions/start on January 21, 2019.

HERE Technologies. (2019). Routing API. Retrieved from

https://developer.here.com/documentation/routing/topics/request-a-simple-route.html on

January 21, 2019.

Hsia, R.Y., Dai, M., Wei, R., Sabbagh, S., & Mann, N.C. (2017). Geographic Discordance Between

Patient Residence and Incident Location in Emergency Medical Services Responses. Annals

of Emergency Medicine, 69(1), 44-51.

Microsoft. (2019). Bing Maps REST Services. Retrieved from https://docs.microsoft.com/en-

us/bingmaps/rest-services on January 21, 2019.

Nyaupane, G.P., Graefe, A., & Burns, R.C. (2003). Does Distance Matter? Differences in

Characteristics, Behaviors, and Attitudes of Visitors Based on Travel Distance. In

Proceedings of the 2003 Northeastern Recreation Research Symposium, 74-81. Newtown

Square, PA: U.S. Department of Agriculture, Forest Service, Northeastern Research Station.

Richardson, L., & Ruby, S. (2007). RESTful Web Services. Sebastopol, CA: O’Reilly Media.

Tsai, T.C., Orav, E.J., & Jha, A.K. (2015). Care Fragmentation in the Postdischarge Period: Surgical

Readmissions, Distance of Travel, and Postoperative Mortality. JAMA Surgery, 150(1), 59-

64.

UnitedStatesZipCodes.org. (2019). Zip Code Database. Retrieved from

https://www.unitedstateszipcodes.org/zip-code-database on January 20, 2019.

Wikipedia. (2019). Haversine Formula. Retrieved from

https://en.wikipedia.org/wiki/Haversine_formula on January 20, 2019.

Zip-Codes.com. (2019). Zip Code API. Retrieved from https://www.zip-codes.com/zip-code-api.asp

on January 20, 2019.

Journal of Business Cases and Applications Volume 24

Calculating distance between zip codes, Page 8

APPENDIX

 This appendix provides Microsoft Access VBA code referred to in the paper. This partial

code for implementing the solution of calculating distance between zip codes is taught to, and

shared with, the students along with the case study. A copy of the example database and the entire

solution code is available from the author upon request.

A. VBA function to calculate distance between zip codes using Zip-Codes.com API

Function fnDistanceBetweenZipcodes(Zipcode1 As String, Zipcode2 As String) As Single

'Function to calculate distance between zip codes using Zip-Codes.com API ...

Dim strURL As String, BodyTxt As String

Dim Temp As Variant 'Return value ...

Dim strSearch As String

strSearch = "<DistanceInMiles>" 'Search pattern to look for in response ...

strURL = "http://api.zip-codes.com/ZipCodesAPI.svc/1.0/xml/CalculateDistance/ByZip?"

strURL = strURL & "fromzipcode=" & Zipcode1 & "&tozipcode=" & Zipcode2 & "&key=

DEMOAPIKEY"

'Send the web service request ...

BodyTxt = getResponse(strURL)

'Parse the returned text for <DistanceInMiles> ...

If InStr(1, BodyTxt, strSearch, vbTextCompare) = 0 Then

 Temp = -1# '<DistanceInMiles> is absent in the response ... Return -1 ...

Else

 Temp = Mid(BodyTxt, InStr(1, BodyTxt, strSearch) + Len(strSearch))

 Temp = Mid(Temp, 1, InStr(1, Temp, "<") - 1)

 Temp = Val(Temp) 'Convert from string to numeric ...

End If

'Return Temp ...

fnDistanceBetweenZipcodes = Temp

End Function

Function getResponse(strURL As String) As String

'Submits the URL request and returns the response ...

Dim oXH As Object

Set oXH = CreateObject("msxml2.xmlhttp")

With oXH

Journal of Business Cases and Applications Volume 24

Calculating distance between zip codes, Page 9

 .Open "get", strURL, False

 .send

 getResponse = .responseText

End With

Set oXH = Nothing

End Function

B. VBA function to calculate distance between geocoded locations using haversine formula

Function HaversineFormulaDistance(Latitude1 As Single, Longitude1 As Single, Latitude2 As

Single, Longitude2 As Single) As Single

Const EarthRadius = 3958 'in miles ...

Dim LatitudeDelta As Single, LongitudeDelta As Single

Dim A As Single, C As Single

'Convert from degrees to radians ...

LatitudeDelta = (Latitude2 * PI / 180) - (Latitude1 * PI / 180)

LongitudeDelta = (Longitude2 * PI / 180) - (Longitude1 * PI / 180)

A = ((Sin(LatitudeDelta / 2)) ^ 2) + Cos(Latitude1 * PI / 180) * Cos(Latitude2 * PI / 180) *

((Sin(LongitudeDelta / 2)) ^ 2)

C = 2 * ArcSin(Sqr(A))

HaversineFormulaDistance = EarthRadius * C

End Function

C. VBA function to calculate routing distance between geocoded locations using HERE.com

Function fnGetRoutingDistanceHERE_API(Latitude1 As Single, Longitude1 As Single, Latitude2

As Single, Longitude2 As Single) As Single

'Function to calculate routing distance between two geocodes using HERE.com API

Dim strURL As String, BodyTxt As String

Dim Temp As Variant 'Return value ...

Dim strSearch As String

'Search pattern to look for in the returned response ...

'"The trip takes

strSearch = "The trip takes " & Chr(60) & "span class=\""length\""" & Chr(62)

Journal of Business Cases and Applications Volume 24

Calculating distance between zip codes, Page 10

strURL = "https://route.api.here.com/routing/7.2/calculateroute.json?"

strURL = strURL & "waypoint0=" & Trim(Str(Latitude1)) & "%2C" & Trim(Str(Longitude1))

strURL = strURL & "&waypoint1=" & Trim(Str(Latitude2)) & "%2C" & Trim(Str(Longitude2))

strURL = strURL & "&mode=fastest%3Bcar%3Btraffic%3Aenabled"

strURL = strURL & "&app_id=devportal-demo-0180625&app_code=9v2BkviRwi9Ot26kp2IysQ"

strURL = strURL & "&departure=now"

'Send the web service request ...

BodyTxt = getResponse(strURL)

'Parse the returned text for strSearch value ...

If InStr(1, BodyTxt, strSearch, vbTextCompare) = 0 Then

 Temp = -1# 'strSearch is absent in the response ... Return -1 ...

Else

 Temp = Mid(BodyTxt, InStr(1, BodyTxt, strSearch) + Len(strSearch))

 Temp = Mid(Temp, 1, InStr(1, Temp, "<") - 1)

 'See if units is meters or kilometers ...

 If InStr(Temp, "km") <> 0 Then

 Temp = Val(Temp) * 0.00062137 * 1000 'Convert km to mile ...

 Else

 Temp = Val(Temp) * 0.00062137 'Convert m to mile ...

 End If

End If

'Return Temp ...

fnGetRoutingDistanceHERE_API = Temp

End Function

